147 research outputs found

    Chapter Green Tea: Just a Drink or Nutraceutical

    Get PDF
    Electrical engineerin

    Green Tea: Just a Drink or Nutraceutical

    Get PDF
    Electrical engineerin

    Diet-Related Thalassemia Associated with Iron Overload

    Get PDF
    Thalassemia is an inherited disease caused by the genetic disorder of α- and β-globin genes, resulting in ineffective erythropoiesis and chronic anemia. Transfusion-dependent β-thalassemia patients require red cell transfusion to maintain their blood hemoglobin level in the normal range, whereas non-transfusion-dependent thalassemia patients increase duodenal absorption of dietary iron in an attempt to accelerate erythropoiesis. These changes give rise to iron overload, oxidative stress, organ dysfunction, and other complications. Effective iron chelators are necessary to achieve negative iron balance and to relieve such complications associated with iron overload. Some pharmaceuticals such as hydroxyurea, N-acetylcysteine, ascorbic acid, vitamin E, and glutathione are also given to thalassemia patients in order to overcome oxidative cell and tissue damage and to generate a better quality of life. Interestingly, functional natural products (such as mango, tea, caffeine, and curcumin), vegetables, and cereal (e.g., rice) are helpful for their health-providing properties by supplementing the endogenous antioxidant defensive power in the body. Natural products exhibit many pharmacological activities, but they are safer if used in the traditional manner

    Nutraceutical Benefits of Green Tea in Beta-Thalassemia with Iron Overload

    Get PDF
    Secondary iron overload in patients with β-thalassemia is caused by multiple blood transfusions and increased iron absorption. Most of them die from cardiac arrest and infections while others from oxidative tissue damage and organ dysfunction. Under high saturation of transferrin with iron, redox-active iron such as non-transferrin-bound iron, labile plasma iron, and cellular labile iron pool is prone to the production of reactive oxygen species, oxidized biomolecules, oxidative tissue damages, and complications. Iron chelation therapy and antioxidant supplementation are a supportive treatment for patients’ better quality of life and life expectancy. Green tea (Camellia sinensis) extract (GTE) is abundant with polyphenols, mainly epigallocatechin-3-gallate and nutraceuticals, which are beneficial for cell functions and health. Importantly, GTE possesses antioxidant, free radical scavenging, metal-chelating, anti-hemolysis properties in cell cultures, animals, and humans. This article has reported modes of actions and challenged such wonderful properties of green tea used to remove excessive iron, scavenge harmful radicals, restore malfunctions of vital organs, and treat patients with β-thalassemia with iron overload. Infeasibility and sustainability, the benefits of green tea can be applied for use in other diseases with iron toxicity and oxidative stress

    Glutathione Redox System in β

    Get PDF
    β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH)/glutathione disulfide (GSSG) and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores

    Sustained Dystrophin Expression Induced by Peptide-conjugated Morpholino Oligomers in the Muscles of mdx Mice

    Get PDF
    Cell-penetrating peptides (CPPs), containing arginine (R), 6-aminohexanoic acid (X), and/or β-alanine (B) conjugated to phosphorodiamidate morpholino oligomers (PMOs), enhance their delivery in cell culture. In this study, the potency, functional biodistribution, and toxicity of these conjugates were evaluated in vivo, in EGFP-654 transgenic mice that ubiquitously express the aberrantly spliced EGFP-654 pre-mRNA reporter. Correct splicing and enhanced green fluorescence protein (EGFP) upregulation serve as a positive readout for peptide-PMO (PPMO) entry into cells and access to EGFP-654 pre-mRNA in the nucleus. Intraperitoneal injections of a series of PPMOs, A-N (12 mg/kg), administered once a day for four successive days resulted in splicing correction in numerous tissues. PPMO-B was highly potent in the heart, diaphragm, and quadriceps, which are key muscles in the treatment of Duchenne muscular dystrophy. We therefore investigated PPMO M23D-B, designed to force skipping of stop-codon containing dystrophin exon 23, in an mdx mouse model of the disease. Systemic delivery of M23D-B yielded persistent exon 23 skipping, yielding high and sustained dystrophin protein expression in body-wide muscles, including cardiac muscle, without detectable toxicity. The rescued dystrophin reduced serum creatinine kinase to near-wild-type levels, indicating improvement in muscle integrity. This is the first report of oligonucleotide-mediated exon skipping and dystrophin protein induction in the heart of treated animals

    The origin and composition of Korean ethnicity analyzed by ancient and present-day genome sequences

    Get PDF
    Koreans are thought to be an ethnic group of admixed northern and southern subgroups. However, the exact genetic origins of these two remain unclear. In addition, the past admixture is presumed to have taken place on the Korean peninsula, but there is no genomic scale analysis exploring the origin, composition, admixture, or the past migration of Koreans. Here, 88 Korean genomes compared with 91 other present-day populations showed two major genetic components of East Siberia and Southeast Asia. Additional paleogenomic analysis with 115 ancient genomes from Pleistocene hunter-gatherers to Iron Age farmers showed a gradual admixture of Tianyuan (40 ka) and Devil's gate (8 ka) ancestries throughout East Asia and East Siberia up until the Neolithic era. Afterward, the current genetic foundation of Koreans may have been established through a rapid admixture with ancient Southern Chinese populations associated with Iron Age Cambodians. We speculate that this admixing trend initially occurred mostly outside the Korean peninsula followed by continuous spread and localization in Korea, corresponding to the general admixture trend of East Asia. Over 70% of extant Korean genetic diversity is explained to be derived from such a recent population expansion and admixture from the South
    corecore